
Homework #6 Solutions 
 
 
Chapter 6 Problem 10 
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Problem 15 
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, implying that θ̂  is an unbiased 

estimator for θ . 
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Problem 22 
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Problem 28 
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Chapter 7 Problem 1 
 

a. 81.2
2

=αz  implies that ( ) 0025.81.212 =Φ−=α , so 005.=α  and the confidence 

level is ( ) %5.99%1100 =−α . 
 
b. 44.1

2
=αz  for ( )[ ] 15.44.112 =Φ−=α , and ( ) %85%1100 =−α . 

 
c. 99.7% implies that 003.=α , 0015.2 =α , and 96.20015. =z . (Look for cumulative area 

.9985 in the main body of table A.3, the Z table.) 
 
d. 75% implies 25.=α , 125.2 =α , and 15.1125. =z . 

 
 
Problem 4 
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Problem 14 
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Problem 23 
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Problem 25 
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Problem 34 
 
n = 14, 48.8=x , s = .79; 771.113,05. =t  

a. A 95% lower confidence bound: 11.837.48.8
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79.

771.148.8 =−=







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confidence, the value of the true mean proportional limit stress of all such joints lies in the 
interval ( )∞,11.8 .  If this interval is calculated for sample after sample, in the long run 95% 
of these intervals will include the true mean proportional limit stress of all such joints.  We 
must assume that the sample observations were taken from a normally distributed population. 

 

b. A 95% lower prediction bound: ( ) 03.745.148.8
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179.771.148.8 =−=+− .  If this 

bound is calculated for sample after sample, in the long run 95% of these bounds will provide 
a lower bound for the corresponding future values of the proportional limit stress of a single 
joint of this type. 

 
 


