

Homework #6 Solutions

Chapter 6 Problem 10

a. $E(\bar{X}^2) = \text{Var}(\bar{X}) + [E(\bar{X})]^2 = \frac{s^2}{n} + m^2$, so the bias of the estimator \bar{X}^2 is $\frac{s^2}{n}$;
thus \bar{X}^2 tends to overestimate m^2 .

b. $E(\bar{X}^2 - kS^2) = E(\bar{X}^2) - kE(S^2) = m^2 + \frac{s^2}{n} - k\frac{s^2}{n}$, so with $k = \frac{1}{n}$,
 $E(\bar{X}^2 - kS^2) = m^2$.

Problem 15

a. $E(X^2) = 2q$ implies that $E\left(\frac{X^2}{2}\right) = q$. Consider $\hat{q} = \frac{\sum X_i^2}{2n}$. Then
 $E(\hat{q}) = E\left(\frac{\sum X_i^2}{2n}\right) = \frac{\sum E(X_i^2)}{2n} = \frac{\sum 2q}{2n} = \frac{2nq}{2n} = q$, implying that \hat{q} is an unbiased estimator for q .

b. $\sum x_i^2 = 1490.1058$, so $\hat{q} = \frac{1490.1058}{20} = 74.505$

Problem 22

a. $E(X) = \int_0^1 x(q+1)x^q dx = \frac{q+1}{q+2} = 1 - \frac{1}{q+2}$, so the moment estimator \hat{q} is the solution to $\bar{X} = 1 - \frac{1}{\hat{q}+2}$, yielding $\hat{q} = \frac{1}{1-\bar{X}} - 2$. Since $\bar{x} = .80$, $\hat{q} = 5 - 2 = 3$.

b. $f(x_1, \dots, x_n; q) = (q+1)^n (x_1 x_2 \dots x_n)^q$, so the log likelihood is
 $n \ln(q+1) + q \sum \ln(x_i)$. Taking $\frac{d}{dq}$ and equating to 0 yields $\frac{n}{q+1} = -\sum \ln(x_i)$, so
 $\hat{q} = -\frac{n}{\sum \ln(x_i)} - 1$. Taking $\ln(x_i)$ for each given x_i yields ultimately $\hat{q} = 3.12$.

Problem 28

- a. $\left(\frac{x_1}{\mathbf{q}} \exp\left[-x_1^2/2\mathbf{q}\right] \right) \cdots \left(\frac{x_n}{\mathbf{q}} \exp\left[-x_n^2/2\mathbf{q}\right] \right) = (x_1 \cdots x_n) \frac{\exp\left[-\sum x_i^2/2\mathbf{q}\right]}{\mathbf{q}^n}$. The natural log of the likelihood function is $\ln(x_1 \cdots x_n) - n \ln(\mathbf{q}) - \frac{\sum x_i^2}{2\mathbf{q}}$. Taking the derivative wrt \mathbf{q} and equating to 0 gives $-\frac{n}{\mathbf{q}} + \frac{\sum x_i^2}{2\mathbf{q}^2} = 0$, so $n\mathbf{q} = \frac{\sum x_i^2}{2}$ and $\mathbf{q} = \frac{\sum x_i^2}{2n}$. The mle is therefore $\hat{\mathbf{q}} = \frac{\sum x_i^2}{2n}$, which is identical to the unbiased estimator suggested in Exercise 15.
- b. For $x > 0$ the cdf of X if $F(x; \mathbf{q}) = P(X \leq x)$ is equal to $1 - \exp\left[-\frac{x^2}{2\mathbf{q}}\right]$. Equating this to .5 and solving for x gives the median in terms of \mathbf{q} : $.5 = \exp\left[-\frac{x^2}{2\mathbf{q}}\right]$ implies that $\ln(.5) = \frac{-x^2}{2\mathbf{q}}$, so $x = \tilde{m} = \sqrt{1.38630}$. The mle of \tilde{m} is therefore $(1.38630\hat{\mathbf{q}})^{\frac{1}{2}}$.

Chapter 7 Problem 1

- a. $z_{\alpha/2} = 2.81$ implies that $\alpha/2 = 1 - \Phi(2.81) = .0025$, so $\alpha = .005$ and the confidence level is $100(1 - \alpha)\% = 99.5\%$.
- b. $z_{\alpha/2} = 1.44$ for $\alpha = 2[1 - \Phi(1.44)] = .15$, and $100(1 - \alpha)\% = 85\%$.
- c. 99.7% implies that $\alpha = .003$, $\alpha/2 = .0015$, and $z_{.0015} = 2.96$. (Look for cumulative area .9985 in the main body of table A.3, the Z table.)
- d. 75% implies $\alpha = .25$, $\alpha/2 = .125$, and $z_{.125} = 1.15$.

Problem 4

- a. $58.3 \pm \frac{1.96(3)}{\sqrt{25}} = 58.3 \pm 1.18 = (57.1, 59.5)$
- b. $58.3 \pm \frac{1.96(3)}{\sqrt{100}} = 58.3 \pm .59 = (57.7, 58.9)$

c. $58.3 \pm \frac{2.58(3)}{\sqrt{100}} = 58.3 \pm .77 = (57.5, 59.1)$

d. 82% confidence $\Rightarrow 1 - a = .82 \Rightarrow a = .18 \Rightarrow a/2 = .09$, so $z_{a/2} = z_{.09} = 1.34$ and the interval is $58.3 \pm \frac{1.34(3)}{\sqrt{100}} = (57.9, 58.7)$.

e. $n = \left[\frac{2(2.58)3}{1} \right]^2 = 239.62$ so $n = 240$.

Problem 14

a. $89.10 \pm 1.96 \frac{3.73}{\sqrt{169}} = 89.10 \pm .56 = (88.54, 89.66)$. Yes, this is a very narrow interval. It appears quite precise.

b. $n = \left[\frac{(1.96)(.16)}{.5} \right]^2 = 245.86 \Rightarrow n = 246$.

Problem 23

a. $\hat{p} = \frac{24}{37} = .6486$; The 99% confidence interval for p is

$$\frac{.6486 + \frac{(2.58)^2}{2(37)} \pm 2.58 \sqrt{\frac{(.6486)(.3514)}{37} + \frac{(2.58)^2}{4(37)^2}}}{1 + \frac{(2.58)^2}{37}} = \frac{.7386 \pm .2216}{1.1799} = (.438, .814)$$

b. $n = \frac{2(2.58)^2(.25) - (2.58)^2(.01) \pm \sqrt{4(2.58)^4(.25)(.25 - .01) + .01(2.58)^4}}{.01}$
 $= \frac{3.261636 \pm 3.3282}{.01} \approx 659$

Problem 25

a. $n = \frac{2(1.96)^2(.25) - (1.96)^2(.01) \pm \sqrt{4(1.96)^4(.25)(.25 - .01) + .01(1.96)^4}}{.01} \approx 381$

$$\mathbf{b.} \quad n = \frac{2(1.96)^2 \left(\frac{1}{3} \cdot \frac{2}{3}\right) - (1.96)^2 (0.01) \pm \sqrt{4(1.96)^4 \left(\frac{1}{3} \cdot \frac{2}{3}\right) \left(\frac{1}{3} \cdot \frac{2}{3} - 0.01\right) + 0.01(1.96)^4}}{0.01} \approx 339$$

Problem 34

$$n = 14, \bar{x} = 8.48, s = .79; t_{0.05, 13} = 1.771$$

- a.** A 95% lower confidence bound: $8.48 - 1.771 \left(\frac{.79}{\sqrt{14}} \right) = 8.48 - .37 = 8.11$. With 95% confidence, the value of the true mean proportional limit stress of all such joints lies in the interval $(8.11, \infty)$. If this interval is calculated for sample after sample, in the long run 95% of these intervals will include the true mean proportional limit stress of all such joints. We must assume that the sample observations were taken from a normally distributed population.
- b.** A 95% lower prediction bound: $8.48 - 1.771(.79) \sqrt{1 + \frac{1}{14}} = 8.48 - 1.45 = 7.03$. If this bound is calculated for sample after sample, in the long run 95% of these bounds will provide a lower bound for the corresponding future values of the proportional limit stress of a single joint of this type.