Math 324 Fall 2004
Computing Guide: Introduction to R

Dr Ben Bolstad
bolstad_math324@bmbolstad.com
http://math324sfsu.bmbolstad.com

Introduction to R

R is a free, GPL licensed, implementation of the S statistical programming language. It pro-
vides a rich environment for carrying out statistical analysis and creating your own functions.
In syntax it is close to the S-plus commercial implementation, so in general, documentation
about S-plus applies also to R.

The recommended procedure is you first type your code into a text file and then copy
and paste it into your R process to have it evaluated. The text editor you use would depend
on your operating system (note Microsoft Word is not a text editor).

The first step is to launch R. How you do this will depend on your operating system
(you will need to either click something or type R at a command prompt). Once inside of
R, the default prompt is ”>". A good place to start is with the internal help system. This
is available with the command

> help.start()

Assignments are done with the two symbols ”<-". In other words, a less-than sign immedi-
ately followed by a dash. For instance, the following command assigns a vector of 10 numbers
to the variable a

> a <- c(2:8,6,6,7)

Simply type the variable name to see its value. The function c() is for concatenate, and
is used to create vectors. The expression 2:8 does the same thing as c(2,3,4,5,6,7,8).
Let’s do some simple arithmetic. Try the following:

> sum(a)

> b <- 5%(a+l) - 7
>d<-b/ a2

> a>b

> e <- ala>5]

http://math324sfsu.bmbolstad.com

Notice that when no assignment is made the results of the computation are print to the
screen. Such results are stored temporarily (until the next computation) in the variable
.Last.value. Notice that the standard arithmetic operations are performed component-
wise when applied to a vector (also true for matrices), and the standard order of operations
is followed. The operation > is a logical comparison, and the final expression will store in
the variable e those elements of a that exceed 5 . The square brackets are used to index
elements of a vector. To see how many elements the vector e has, use length(e). To see all
of the variables in your work area type 1s() or objects() for a list. Note what happens if
the parenthesis are omitted.
Here are some examples of matrices:

> x <- matrix(1:12,3,4,byrow=T)
>y <- matrix(c(7,3,4),2,3)

> z <- matrix(rnorm(30),ncol=3)
> w <- diag(rep(1,4))

Notice what happens if byrow=T is omitted from the first example. As for the second, if the
number of values divides the number of entries in the matrix evenly R will cycle through
until the matrix is full. This can lead to some nasty bugs. The third makes a 10 by 3
matrix of random standard normals. The fourth uses the useful rep() function to make a
4 dimensional identity matrix. Matrix multiplication is done with the symbol %*% and the
function t () transposes a matrix. A very useful function is apply (). It applies a function
to rows or columns of a matrix. For example,

> apply(z,2,mean)

Takes the means of the three columns of the matrix z. See also tapply(), sapply(), and
lapply () for cousins of this function.
Let’s talk graphics. To get a histogram of d, we first need to open a graphics device.

> hist(d)

The brackets () denote that the object is a function. The first one above does not require
any arguments. One of the powerful features of R is the ease with which you can write your
own functions. For example, here is a simple function that returns the standard deviation
of a vector of numbers.

> sd <- function(x) {sqrt(var(x))}

With more complicated functions you will want to create them in an editor and then load
them into R using the R function source() or by copying and pasting them into . We can
now call this function just as if it was any other function. For example,

> sd(a)

finds the SD of the vector a.

Here is an example of a more complicated analysis. Suppose that a data file called
"fish.dat” exists in the same directory that I am working in and contains two columns of
data. The first is the weight for 68 trout caught in Bear Lake, and the second is the length.
We want to perform a linear regression of weight on length and produce residual plots all
on the same figure. Use your editor to generate your own data if you want to practice this
exercise. The symbol # is the comment symbol. Use help.start for details regarding the
functions (note it is not important that you understand right now what all the following
functions do) .

fish <- read.table("fish.dat") # read in data

dimnames(fish) <- 1ist(NULL, c("weight","length")) # give labels
fish <- as.data.frame(fish) # makes life easier below

fitl <-1lm(weight ~ length, data=fish) # fit the linear model
fitl.sum <- summary(fitl) # get results from model fit
sink("fish.fit") # output fit results to a UNIX

print(fitl.sum) # file called "fish.fit"

sink() # close the file when done.

par (mfrow=c(2,2), oma=c(0,0,2,0)) # partition graphics region
plot(fish$length, fish$weight) # scatter plot

abline(fitl) # add regression line

plot(fiti$fitted, fitl$resid) # residual plots

plot(fish$length, fitl$resid) # more residual plots
qqnorm(fiti$resid) # normal quantile plot

qqline(fit1$resid) # best line for quantile plot

mtext (outer=T,side=3,"Linear Regression of Weight and Height") # title

VvV VVV V VYV VYV YV VYV YV YVYVYV

To leave R, use

qO

\4

Reading in data

Typically, you would begin your analysis by reading the data in to R. The general function
for reading text files containing data with variables stored in columns and cases (individuals)
stored in rows is read.table. For instance to read a text file excitingdata.trt and store it in
a variable names Exciting type

Exciting <- read.table("exciting.data")

If the first row of your data file contains column names you should instead type
Exciting <- read.table("exciting.data",header=TRUE)

and if it is tab-delimited them use

Exciting <- read.table("exciting.data",header=TRUE,sep="\t")

Histograms, stem-plots, boxplots and scatterplots

The command in R for drawing histograms is hist (). Suppose that z is a vector containing
numerical data. Then

> hist(x)

will draw a histogram. If we wanted to specify a particular number of cells (histogram bins)
then we would use

> hist(x,breaks=10)

\end{verbatim)

Another way to do this would be to specify where the breaks should fall
\begin{verbatim}

> hist(x,breaks=seq(min(x) ,max(x),length=11)

and of course you can find more about drawing histograms using ?hist.
Stem plots are created using stem(). For example

> stem(x)

will create a stem plot of the data vector x.

Suppose that x contains a quantitative variable and y contains a categorical variable.
Each z, y pair is a recording for a single individual. To create a boxplot of the quantitative
variable type

> boxplot (x)

and to create boxplots of the quantitative variable for different values of the categorical
variable

> boxplot(x ~ y)

A scatterplot is useful for comparing two quantitative variables (each measured on the
same individuals). Suppose z,z contain quantitative variables each measured on the same
set of individuals. Then

> plot(x,y)

will plot the y variable on the vertical axis against the x variable on the horizontal axis.

Simulating random data

To simulate random normal distribution data use the rnorm function. The command

> x <= rnorm(100)

will generate 100 random standard normal distribution values (mean 0, sd 1) and store it in
the variable . The command

> x <- rnorm(1000,mean=10, sd=5)

generates 1000 random numbers from a normal distribution with mean 10 and sd 5.
To simulate random numbers from the exponential distribution use the rexp function.

cg
> y <- rexp(50)

generates 50 random numbers from the exponential distribution with mean 1.

A few hints for working with the cereals.dat data

Once you’ve read the data into R, you might want to use the attach() function. Suppose
that cereals is the name of the variable into which you read the data. Then try

1s(O)
attach(cereals)
1sQ)

notice something? You should now have direct access to the each of the variables stored by
name. This will make it a lot easier to create plots of the data. Another way to access the
data stored in a data.frame or matrix is to use subscripting. For example

cereals|[,2]
would return the second column of the cereals dataframe. While
cereals[15,]

would return the fifthteenth row of the cereals dataframe.
You will probably want to use freq=FALSE as a parameter to your call to hist in the
simulation to ensure that you get plots of relative frequencies (ie probabilities).

Where to get more help

The documentation for R contains a lot of specifics on each command. On the R website
there is also lots of documentation. I recommend the manual “An Introduction to R”. It
should contain sufficient detail for this class.

http://www.r-project.org

